Maximal green sequences of minimal mutation-infinite quivers

John Lawson joint with Matthew Mills

Durham University

Oct 2016

Research Council

Theorem. All minimal mutation-infinite quivers have a maximal green sequence.

Theorem. Any cluster algebra generated by a minimal mutation-infinite quiver is equal to its upper algebra.

Theorem. The different move-classes of minimal mutation-infinite quivers belong to different mutation-classes (mostly...).

Quivers and mutations

(Cluster) quiver — directed graph with no loops or 2-cycles. Mutation μ_k at vertex k:

- Add arrow $i \rightarrow j$ for each path $i \rightarrow k \rightarrow j$
- Reverse all arrows adjacent to \boldsymbol{k}
- Remove maximal collection of 2-cycles

Induced subquiver — obtained by removing vertices.

Quivers and mutations

Quiver Q is **mutation-equivalent** to P if there are mutations taking Q to P.

Mut(Q) is the **mutation class** of Q containing all quiver mutation-equivalent to Q.

Q is **mutation-finite** if its mutation class is finite. Otherwise it is **mutation-infinite**.

Q is **minimal mutation-infinite** if every induced subquiver is mutation-finite.

MMI classes

Minimal mutation-infinite quivers classified into move-classes [L '16], with representatives:

- Hyperbolic Coxeter simplex representatives
- Double arrow representatives
- Exceptional representatives

Hyperbolic Coxeter simplex diagrams

Double arrow representatives

Exceptional type representatives

Framed quivers

A **framed quiver** \widehat{Q} is constructed from quiver Q, by adding an additional frozen vertex \hat{i} for each vertex i in Q and a single arrow $i \rightarrow \hat{i}$.

Red and green

A mutable vertex *i* in \hat{Q} is **green** if there are no arrows $\hat{j} \rightarrow i$. A mutable vertex *i* in \hat{Q} is **red** if there are no arrows $i \rightarrow \hat{j}$.

Theorem (Derksen-Weyman-Zelevinsky '10). Any mutable vertex in a quiver is red or green.

Maximal green sequences

Assume a quiver Q has vertices labelled $(1, \ldots, n)$.

A **mutation sequence** is a sequence of vertices $\mathbf{i} = (i_1, \dots, i_k)$ corresponding to mutating first in vertex i_1 , then i_2 and so on.

A green sequence is a mutation sequence where every mutation is at a green vertex.

A **maximal green sequence** is a green sequence where every mutable vertex in the resulting quiver is red.

MGS example

Some results

Proposition (Brüstle-Dupont-Perotin '14). If **i** is a maximal green sequence for Q then $\mu_i(Q)$ is isomorphic to Q.

The **induced permutation** of a maximal green sequence is the permutation σ such that $\sigma(\mu_i(Q)) = Q$.

Theorem (BPS '14). Any acyclic quiver has a maximal green sequence.

Proposition (BPS '14). A quiver Q has a maximal green sequence if and only if Q^{op} has a maximal green sequence.

Proposition (Muller '15). If Q has a maximal green sequence, every induced subquiver has a maximal green sequence.

Proposition (Muller '15). Having a maximal green sequence is not mutation-invariant.

Proposition (Mills '16). If Q is a mutation-finite quiver, then provided Q does not arise from a once-punctured closed surface and is not mutation-equivalent to the type X_7 quiver, then Q has a maximal green sequence.

Rotation lemma

Lemma (Brüstle-Hermes-Igusa-Todorov '15). If $\mathbf{i} = (i_1, i_2, ..., i_\ell)$ is a maximal green sequence of Q with induced permutation σ , then $(i_2, ..., i_\ell, \sigma^{-1}(i_1))$ is a maximal green sequence for the quiver $\mu_{i_1}(Q)$ with the same induced permutation.

Lemma. If $\mathbf{i} = (i_1, \ldots, i_{\ell-1}, i_\ell)$ is a maximal green sequence of Q with induced permutation σ , then $(\sigma(i_\ell), i_1, \ldots, i_{\ell-1})$ is a maximal green sequence for the quiver $\mu_{\sigma(i_\ell)}(Q)$ with the same induced permutation.

Direct sums of quivers [Garver-Musiker '14]

Given two quivers P and Q with k-tuples (a_1, \ldots, a_k) of vertices of P, (b_1, \ldots, b_k) of vertices of Q, the **direct sum**

$$\mathsf{P}\oplus^{(b_1,...,b_k)}_{(a_1,...,a_k)} Q$$

is the quiver obtained from the disjoint union of P and Q, with additional arrows $a_i \rightarrow b_i$ for each i.

This is a *t*-coloured direct sum if *t* is the number of distinct vertices in (a_i) and there are no repeated arrows $a_i \rightarrow b_i$ added.

MGS for direct sums

Theorem (GM '14). If $P = Q \oplus_{(a_1,\ldots,a_k)}^{(b_1,\ldots,b_k)} R$ is a t-colored direct sum, (i_1,\ldots,i_r) is a maximal green sequence for Q, and (j_1,\ldots,j_s) is a maximal green sequence for R, then

$$(i_1,\ldots,i_r,j_1,\ldots,j_s)$$

is a maximal green sequence for P.

Quivers ending in a 3-cycle

Theorem. If Q ends in a 3-cycle and C has a maximal green sequence \mathbf{i}_C , then Q has a maximal green sequence $(b, \mathbf{i}_C, \mathbf{a}, b)$.

Rank 3 MMI quivers and maximal green sequences

Proposition (Muller '15). If a, b and $c \ge 2$ then $Q_{a,b,c}$ does not have a maximal green sequence.

Proposition. If any of a, b or c are 1, then $Q_{a,b,c}$ has a maximal green sequence.

Higher ranks

Recall: all mutation-finite quivers have a maximal green sequence, unless they come from a triangulation of a once-punctured closed surface or are mutation-equivalent to X_7 .

Lemma. No minimal mutation-infinite quiver contains a subquiver which does not have a maximal green sequence.

Corollary. Every subquiver of a minimal mutation-infinite quiver has a maximal green sequence.

MMI quivers have MGS

Theorem. If Q is a minimal mutation-infinite quiver of rank at least 4 then Q has a maximal green sequence.

Most have a sink or a source — leaving 192.

Many others are direct sums — leaving 42.

35 of these end in a 3-cycle — leaving 7.

The remaining 7 quivers

Mutation-classes of MMI move-classes quivers

Moves are sequences of mutations.

Quivers in the same class must be mutation-equivalent.

But does each move-class belong to a different mutation-class?

Tools Ranks, determinants and acyclics

Rank of the adjacency matrix is mutation-invariant [Berenstein-Fomin-Zelevinsky '05].

Determinant of the adjacency matrix is mutation-invariant.

Whether a quiver is mutation-acyclic — and how many acyclic quivers are in the mutation class [Caldero-Keller '06].

Class	$rank(B_Q)$	No. Acyclic	Class	$rank(B_Q)$	No. Acyclic
41	4	6	7 ₃	6	30
4 ₂	2	4	74	6	28
4 ₃	4	2	81	8	80
44	4	1	8 ₂	6	96
4 ₅	4	0	8 ₃	8	14
4 ₆	4	6	84	8	42
51	4	8	8 ₅	8	70
5 ₂	4	10	9 ₁	8	219
5 ₃	4	5	9 ₂	8	151
54	2	5	9 ₃	8	16
61	4	16	94	8	55
62	2	6	9 ₅	8	95
6 ₃	6	10	9 ₆	8	76
64	6	20	10_{1}	10	225
71	6	48	10 ₂	8	138
7 ₂	6	12			

Non mutation-acyclic quivers

How can you prove that a quiver is not mutation-equivalent to an acyclic quiver?

Use the idea of admissible quasi-Cartan companions.

Admissible quasi-Cartans

A quasi-Cartan companion of a quiver Q is a symmetric matrix $A = (a_{i,j})$ such that $a_{i,i} = 2$ and $a_{i,j} = |b_{i,j}|$ where $B = (b_{i,j})$ is the adjacency matrix of Q.

A quasi-Cartan companion of Q is **admissible** if for any oriented (resp., non-oriented) cycle Z in Q, there are an odd (resp., even) number of edges $\{i, j\}$ in Z such that $a_{i,j} > 0$.

Theorem (Seven '15). If Q is mutation-acyclic, then Q has an admissible quasi-Cartan companion.

Admissible quasi-Cartans

How can you prove a quiver does not have an admissible quasi-Cartan companion?

Proposition (Seven '11). Two admissible companions of a quiver Q can be obtained from one another by a number of simultaneous sign changes in rows and columns.

MMI quiver with no admissible companion

Corollary. This quiver is not mutation-acyclic.

Proposition. Each double arrow move-class contains no acylic quivers.

Each representative is mutation-equivalent to something which contains:

Same for exceptional classes

Proposition. Each exceptional move-class contains no acylic quivers.

But don't know if they belong to different mutation-classes to each other or to the double arrow classes.