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Introduction

Mutations on quivers studied following the introduction ofcluster algebras by Fomin and Zelevinsky in 2002.
This work follows:

? Classification of minimal infinite-type diagrams by Sevenpublished in 2007
? Classification of mutation-finite quivers by Felikson,Shapiro and Tumarkin published in 2012



Quiversdirected (multi-)graphs with no loops or 2-cycles



Adjacency matrix
A = (ai ,j ) where ai ,j = #(i → j )−#(j → i )

 0 1 1
−1 0 1
−1 −1 0





Mutations
Mutation is a function on the quiver which acts at a vertex kthrough 3 steps:
1. For each pair of arrows i → k → j add an arrow i → j .2. Reverse direction of arrows adjacent to k .3. Remove any 2-cycles created in step (1).
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Mutation examplesmutate at top vertex
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Mutations

Mutations are involutions.



Matrix mutations

Mutation at vertex k takes an adjacency matrix B = (bi ,j ) to
B ′ = (b ′

i ,j ) where

b ′
i ,j =

{
−bi ,j if i = k or j = k
bi ,j + |

bi ,k |bk ,j+bi ,k |bk ,j |2 otherwise



Mutation-equivalentif there is a sequence of mutations



Mutation-finiteor conversely mutation-infinite



Partial orderingon mutation-infinite quivers given by inclusion
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Minimal mutation-infinite quivers
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Mutations do not preserveminimal mutation-infinite property

mutate

remove vertex



Whyare minimal mutation-infinite quivers interesting?

Any quiver containing a minimal mutation-infinite subquiver isnecessarily mutation-infinite.
A complete classification would give a systematic approach tocheck whether any given quiver is mutation-infinite or not.



Ahmet Seven’s classificationof minimal infinite-type diagrams

Seven classified all the infinite-type diagrams such thatremoving a vertex yielded a finite-type diagram.



Felikson, Shapiro and Tumarkinstarted studying minimal mutation-infinite quivers

In their paper on classifying mutation-finite quivers, FSTproved that there were no minimal mutation-infinite quiverswith more than 10 vertices.



Minimal mutation-infinite quivers

Distinguished family of minimal mutation-infinite quiverswhich are orientations of simply-laced Coxeter diagrams ofhyperbolic Coxeter simplices.



Coxeter simplexconvex hull of n + 1 points

Considered inside spherical, Euclidean or hyperbolic space.
n + 1 hyper-planes Hi with dihedral angles π

kij (or possibly 0)between Hi and Hj .
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Coxeter diagramfrom simplex bounded by Hi with angles πkij

? vertex i for each Hi
? edge i − j with no weight when kij = 3
? edge i − j with weight kij when kij > 3
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Coxeter groupfrom a Coxeter simplex or diagram

A Coxeter group can be constructed from a Coxeter diagramthrough the following presentation〈
si
∣∣∣ s2i = 1 = (si sj )kij

〉
.



Simply-laced Coxeter diagramonly have kij = 2 or 3

Coxeter diagram with no weighted edges.
Choosing an orientation of the edges gives a quiver.



Simply-laced Spherical Coxeter diagramsare Dynkin diagrams of type A ,D or E

An : · · ·
n

Dn : · · ·
n − 2

E6 : E7 :

E8 :



Simply-laced Euclidean Coxeter diagrams
are affine Dynkin diagrams of type Ã , D̃ or Ẽ

Ãn : · · ·
n − 1

D̃n : · · ·
n − 4

Ẽ6 : Ẽ7 :

Ẽ8 :



Simply-laced Hyperbolic Coxeter diagrams

Simply-laced Hyperbolic Coxeter simplices give diagramssatisfying:
? any subdiagram is either a Dynkin diagram or an affineDynkin diagram, but the diagram itself is not.



Orientations of simply-laced HyperbolicCoxeter diagrams are mutation-infinite quivers

Felikson, Shapiro and Tumarkin classified all mutation-finitequivers - (almost all) orientations of simply-laced HyperbolicCoxeter diagrams do not lie in this classification.



Mutation-finite orientationsof hyperbolic Coxeter diagrams



Orientations of simply-laced HyperbolicCoxeter diagrams areminimalmutation-infinite quivers

Orientations of Dynkin diagrams and affine Dynkin diagramsare mutation-finite.
Orientations of simply-laced Hyperbolic Coxeter diagrams aremutation-infinite.



Are these all?



Are these all?

For minimal mutation-infinite quivers with 4 and 5 vertices:
Yes



No



Patterns among the quivers



Movesreplace a subquiver while staying minimal mutation-infinite



Another example



and many more



Sink-source mutations preserveminimal mutation-infinite-ness

A sink-source mutation does not affect the underlyingunoriented graph of a quiver and does not change themutation class of any subquivers.



Result

Any minimal mutation-infinite quiver can be transformedthrough sink source mutations and at most 10 moves to either
? a hyperbolic Coxeter simplex diagram
? a double arrow quiver
? an exceptional quiver



Resultfor quivers up to size 9

Any minimal mutation-infinite quiver can be transformedthrough sink-source mutations and at most 5moves to either
? a hyperbolic Coxeter simplex diagram
? a double arrow quiver
? an exceptional quiver



Double arrow quivers



Exceptional cases



Hyperbolic Coxeter diagrams



Result

Any minimal mutation-infinite quiver can be transformedthrough sink source mutations and at most 10 moves to either
? a hyperbolic Coxeter simplex diagram
? a double arrow quiver
? an exceptional quiver
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