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Introduction

Mutations on quivers studied following the introduction of
cluster algebras by Fomin and Zelevinsky in 2002.

This work follows:

* Classification of minimal infinite-type diagrams by Seven
published in 2007

x Classification of mutation-finite quivers by Felikson,
Shapiro and Tumarkin published in 2012



Quivers
directed (multi-)graphs with no loops or 2-cycles




Adjacency matrix

A= (aij)wherea;;=#( —j)—#( =)




Mutations

Mutation is a function on the quiver which acts at a vertex k
through 3 steps:

1. For each pair of arrows i — k — j add an arrow i — j.
2. Reverse direction of arrows adjacent to k.
3. Remove any 2-cycles created in step (1).
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Mutation examples
mutate at tOp vertex




Mutations

Mutations are involutions.



Matrix mutations

Mutation at vertex k takes an adjacency matrix B = (b; ;) to
B' = (b,.’j) where

b _{_bi,j ifi=k01'j=k

= by k| bicj+bi i |bi .
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Mutation-equivalent
if there is a sequence of mutations




Mutation-finite

or conversely mutation-infinite
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Partial ordering

on mutation-infinite quivers given by inclusion
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Minimal mutation-infinite quivers
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Mutations do not preserve

minimal mutation-infinite property
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Why

are minimal mutation-infinite quivers interesting?

Any quiver containing a minimal mutation-infinite subquiver is
necessarily mutation-infinite.

A complete classification would give a systematic approach to
check whether any given quiver is mutation-infinite or not.



Ahmet Seven's classification

of minimal infinite-type diagrams

Seven classified all the infinite-type diagrams such that
removing a vertex yielded a finite-type diagram.



Felikson, Shapiro and Tumarkin

started studying minimal mutation-infinite quivers

In their paper on classifying mutation-finite quivers, FST
proved that there were no minimal mutation-infinite quivers
with more than 10 vertices.



Minimal mutation-infinite quivers

Distinguished family of minimal mutation-infinite quivers
which are orientations of simply-laced Coxeter diagrams of
hyperbolic Coxeter simplices.



Coxeter simplex

convex hull of n + 1 points

Considered inside spherical, Euclidean or hyperbolic space.

n + 1 hyper-planes H; with dihedral angles klu (or possibly 0)
between H; and H;.
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Coxeter diagram

from simplex bounded by H; with anglesqu_

* vertex i for each H;
» edge / — j with no weight when k; =3
» edge i — j with weight k; when k; > 3
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Coxeter group

from a Coxeter simplex or diagram

A Coxeter group can be constructed from a Coxeter diagram
through the following presentation

g

st=1= (Sisj)kij>~



Simply-laced Coxeter diagram

only have k; =2 or 3

Coxeter diagram with no weighted edges.

Choosing an orientation of the edges gives a quiver.



Simply-laced Spherical Coxeter diagrams

are Dynkin diagrams of type A,D or E
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Simply-laced Euclidean Coxeter diagrams
are affine Dynkin diagrams of type A, D or E




Simply-laced Hyperbolic Coxeter diagrams

Simply-laced Hyperbolic Coxeter simplices give diagrams
satisfying:

* any subdiagram is either a Dynkin diagram or an affine
Dynkin diagram, but the diagram itself is not.



Orientations of simply-laced Hyperbolic

Coxeter diagrams are mutation-infinite quivers

Felikson, Shapiro and Tumarkin classified all mutation-finite
quivers - (almost all) orientations of simply-laced Hyperbolic
Coxeter diagrams do not lie in this classification.



Mutation-finite orientations
of hyperbolic Coxeter diagrams




Orientations of simply-laced Hyperbolic

Coxeter diagrams are minimal mutation-infinite quivers

Orientations of Dynkin diagrams and affine Dynkin diagrams
are mutation-finite.

Orientations of simply-laced Hyperbolic Coxeter diagrams are
mutation-infinite.



Are these all?
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Are these all?
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Patterns among the quivers
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Moves
replace a subquiver while staying minimal mutation-infinite




Another example
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and many more




Sink-source mutations preserve

minimal mutation-infinite-ness

A sink-source mutation does not affect the underlying
unoriented graph of a quiver and does not change the
mutation class of any subquivers.



Any minimal mutation-infinite quiver can be transformed
through sink source mutations and at most 10 moves to either

* a hyperbolic Coxeter simplex diagram
* a double arrow quiver
* an exceptional quiver



Result

for quivers up to size 9

Any minimal mutation-infinite quiver can be transformed
through sink-source mutations and at most 5 moves to either

* a hyperbolic Coxeter simplex diagram
* a double arrow quiver
* an exceptional quiver



Double arrow quivers
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Exceptional cases




Hyperbolic Coxeter diagrams
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Any minimal mutation-infinite quiver can be transformed
through sink source mutations and at most 10 moves to either

* a hyperbolic Coxeter simplex diagram
* a double arrow quiver
* an exceptional quiver
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