Minimal mutation-infinite quivers

John Lawson

Durham University

Workshop on Cluster Algebras and finite dimensional algebras

Introduction

Mutations on quivers studied following the introduction of cluster algebras by Fomin and Zelevinsky in 2002.

This work follows:

- ★ Classification of minimal infinite-type diagrams by Seven published in 2007
- Classification of mutation-finite quivers by Felikson, Shapiro and Tumarkin published in 2012

Quivers directed (multi-)graphs with no loops or 2-cycles

Adjacency matrix $A = (a_{i,j})$ where $a_{i,j} = \#(i \rightarrow j) - \#(j \rightarrow i)$

$$\begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}$$

Mutations

Mutation is a function on the quiver which acts at a vertex k through 3 steps:

- 1. For each pair of arrows $i \rightarrow k \rightarrow j$ add an arrow $i \rightarrow j$.
- 2. Reverse direction of arrows adjacent to *k*.
- 3. Remove any 2-cycles created in step (1).

Mutation examples mutate at top vertex

Mutations

Mutations are involutions.

Matrix mutations

Mutation at vertex k takes an adjacency matrix $B = (b_{i,j})$ to $B' = (b'_{i,j})$ where

$$b_{i,j}' = \begin{cases} -b_{i,j} & \text{if } i = k \text{ or } j = k \\ b_{i,j} + \frac{|b_{i,k}|b_{k,j} + b_{i,k}|b_{k,j}|}{2} & \text{otherwise} \end{cases}$$

Mutation-equivalent if there is a sequence of mutations

Mutation-finite or conversely mutation-infinite

Partial ordering on mutation-infinite quivers given by inclusion

Minimal mutation-infinite quivers

Mutations do not preserve minimal mutation-infinite property

Why are minimal mutation-infinite quivers interesting?

Any quiver containing a minimal mutation-infinite subquiver is necessarily mutation-infinite.

A complete classification would give a systematic approach to check whether any given quiver is mutation-infinite or not. Ahmet Seven's classification of minimal infinite-type diagrams

Seven classified all the infinite-type diagrams such that removing a vertex yielded a finite-type diagram.

Felikson, Shapiro and Tumarkin started studying minimal mutation-infinite quivers

In their paper on classifying mutation-finite quivers, FST proved that there were no minimal mutation-infinite quivers with more than 10 vertices.

Minimal mutation-infinite quivers

Distinguished family of minimal mutation-infinite quivers which are orientations of simply-laced Coxeter diagrams of hyperbolic Coxeter simplices.

Coxeter simplex convex hull of n + 1 points

Considered inside spherical, Euclidean or hyperbolic space.

n + 1 hyper-planes H_i with dihedral angles $\frac{\pi}{k_{ij}}$ (or possibly 0) between H_i and H_j .

Coxeter diagram from simplex bounded by H_i with angles $\frac{\pi}{k_{ii}}$

- \star vertex *i* for each H_i
- * edge i j with no weight when $k_{ij} = 3$
- * edge i j with weight k_{ij} when $k_{ij} > 3$

Coxeter group from a Coxeter simplex or diagram

A Coxeter group can be constructed from a Coxeter diagram through the following presentation

$$\left\langle s_i \mid s_i^2 = 1 = (s_i s_j)^{k_{ij}} \right\rangle.$$

Simply-laced Coxeter diagram only have $k_{ij} = 2 \text{ or } 3$

Coxeter diagram with no weighted edges.

Choosing an orientation of the edges gives a quiver.

Simply-laced Spherical Coxeter diagrams are Dynkin diagrams of type A,D or E

Simply-laced Euclidean Coxeter diagrams are affine Dynkin diagrams of type \tilde{A} , \tilde{D} or \tilde{E}

Simply-laced Hyperbolic Coxeter diagrams

Simply-laced Hyperbolic Coxeter simplices give diagrams satisfying:

★ any subdiagram is either a Dynkin diagram or an affine Dynkin diagram, but the diagram itself is not. Orientations of simply-laced Hyperbolic Coxeter diagrams are mutation-infinite quivers

Felikson, Shapiro and Tumarkin classified all mutation-finite quivers - (almost all) orientations of simply-laced Hyperbolic Coxeter diagrams do not lie in this classification. Mutation-finite orientations of hyperbolic Coxeter diagrams

Orientations of simply-laced Hyperbolic Coxeter diagrams are **minimal** mutation-infinite quivers

Orientations of Dynkin diagrams and affine Dynkin diagrams are mutation-finite.

Orientations of simply-laced Hyperbolic Coxeter diagrams are mutation-infinite.

Patterns among the quivers

replace a subquiver while staying minimal mutation-infinite

Another example

and many more

Sink-source mutations preserve minimal mutation-infinite-ness

A sink-source mutation does not affect the underlying unoriented graph of a quiver and does not change the mutation class of any subquivers.

Result

Any minimal mutation-infinite quiver can be transformed through sink source mutations and at most 10 moves to either

- $\star\,$ a hyperbolic Coxeter simplex diagram
- * a double arrow quiver
- * an exceptional quiver

Result for quivers up to size 9

Any minimal mutation-infinite quiver can be transformed through sink-source mutations and at most **5** moves to either

- $\star\,$ a hyperbolic Coxeter simplex diagram
- * a double arrow quiver
- \star an exceptional quiver

Double arrow quivers

Hyperbolic Coxeter diagrams

Result

Any minimal mutation-infinite quiver can be transformed through sink source mutations and at most 10 moves to either

- $\star\,$ a hyperbolic Coxeter simplex diagram
- * a double arrow quiver
- * an exceptional quiver